

Dec 11, 2019

NYISO 2019-2020 ICAP Demand Curve Reset

LUCE III

Benteriori para de la como de

2019-2020 Demand Curve Reset (DCR)

Technology Screening

Proposed Screening Technology Criteria

- Standard generating facility technology available to most market participants
 - Technology not limited by geographical region or other aspects
- Mature market technology
 - Commercial operating experience in North America
- Unit characteristics that can be economically dispatched
- Ability to cycle and provide energy or ancillary services
- Capable of being designed to meet applicable environmental and other operating requirements, including NYSDEC/EPA air quality standards

Rented by the particular of th

2019-2020 DCR

10-5

Initial Technology Options

Aero SCGT Technology Overview

- Number of starts does not impact maintenance schedule
- Fast start-up time (~10 minutes) base technology option
- Can provide both dry-type and wet-type combustion system for NOx control
 - New Source Performance Standard (NSPS) and other environmental regulations may require selective catalytic reduction (SCR) catalyst
- Typical capacity range is 50MW -100MW

Recommended representative technology option: GE LMS100

- ► Offers two (2) models-
 - ▶ (PA+) wet injection for NOx control during NG and FO operation
 - ▶ (PB+) dry-low NOx on NG availbility no FO operation availability
- Representative cost (initial screening indicates this is likely the lowest base capital cost of comparable technologies)
- ▶ ISO Heat Rate 8,567 Btu/kWh HHV

Aeroderivative Comparative Technology

Aeroderivative Combustion Turbine	Experience	ISO Capacity (MW)	Initial Screening Cost Estimate (\$/kW) ¹	HHV Heat Rate (Btu/kWh) ²
GE LM6000 PC	First model introduced in 1997, mature technology in North America	45	\$1,200	9,603
GE LMS100 PA+	First introduced in 2006, mature technology in North America	117	\$900	8,567
Siemens SGT-A65; Formerly RR Trent 60	First introduced in 2016, fleet leader has >110,000 EOH	70.8	\$1,150	9,149
Siemens SGT-A45 (Wet Injection)	Core technology based on A65 model	44	\$1,300+	9,409
P&W (MHPS) FT4000	First introduced in 2012	70 single / 140 (twin-pac)	\$1,200+	9,174 / 9,152

- 1 Preliminary capital cost estimate for screening purposes
- 2 HHV based on typical US pipeline quality gas heating value
- **All technologies compared are wet-injection based performances
- * Information provided publicly available information published by manufacturer

Frame SCGT Technology Overview

- Frame technology is continuously evolving larger and more efficient units of proven frame models
- Dry Low NOx combustion
- Can provide significant capacity in ~10 minutes and full load in 30 minutes; turndown capability has improved
- Lower capital cost (\$/kW) than aeroderivative options
- Maintenance cost impacted by number of starts

Recommended representative technology options: GE 7F.05 or 7HA.02

- Representative cost (initial screening indicates the GE models are similar or lower than other comparable technology options)
- Differing capacity profile at ISO conditions: 243MW (7F.05) / 384MW (7HA.02)
- Differing ISO Heat Rates: 9,513 (7F.05) / 8,890 (7HA.02) Btu/kWh HHV
- F Class has longer operating history; H Class has < 2 years of operating experience in SCGT arrangement with SCR

Frame SCGT Comparative Technology

Frame SCGT	Experience	ISO Capacity (MW)	Initial Screening Cost Estimate (\$/kW) ¹	HHV Heat Rate (Btu/kWh) ²
GE 7HA.02	First year introduced 2017, fleet operating hours of 205,000 EOH	384		8,890
Siemens SGT6-9000HL	No units in commercial operation in North America (First delivery accepted in Nov 2019)	405	\$550	8,891
MHPS 501JAC	No units in commercial operation in North America	425		9,082
Siemens SGT6-8000H	Installed fleet has accumulated >1MM EOH	310		9,468
MHPS 501GAC	First commercial operation in 2014, mature technology	283	\$640	9,469
GE 7FA.05	First FA.05 in operation in 2014 - F-Class is GE fleet leader	243		9,513
Siemens SGT6-5000F	Installed fleet has accumulated >15MM EOH	260	\$570	9,588

1 Preliminary capital cost estimate for screening purposes

2 HHV based on typical US pipeline quality gas heating value

*Information provided publicly available information published by manufacturer

Reciprocating Engine (RICE) Technology Overview

- Small output units that can be installed in multi-unit blocks (low energy density)
- Fast start-up time (5 minutes)
 - Assuming engine jacket temperature has been maintained high O&M due to auxiliary load
- Performance not impacted by ambient conditions (elevation or temperature)
- Low natural gas pressure requirements (Max 135 psi-g)
- Maintenance independent of number of starts
- Recommendation: Not recommending consideration of this technology option for this reset
 - Initial cost screening and results of prior resets indicate that a RICE unit is not likley to be a lowest cost option among other fossil-fuel fired technologies
 - Helps facilitate the capability to assess other technology options (energy storage, as well as F class and H class for frame turbines)

RICE Technology Overview

Reciprocating Engine	Experience	ISO Capacity (MW)	Initial Screening Cost Estimate (\$/kW) ¹	HHV Heat Rate (Btu/kWh) ²
Wartsila 18V50SG (NG only option)	Mature technology in North American market – market leader	18.76	\$1,150	7,797
Wartsila 18V50DF (Dual Fuel Option)	Mature technology in North American market – market leader	16.94	\$1,250	8,452
Fairbanks Morse MAN51	Not widely utilized in North American market	18.43	\$1,300+	NA

1 Preliminary capital cost estimate for screening purposes

2 HHV based on typical US pipeline quality gas heating value

* Information provided publicly available information published by manufacturer

** 9MW options available but increases \$/kW capital costs due to low energy density

generation of the later.

2019-2020 DCR

10-5

Combined Cycle Technology

CCGT Technology Overview

- Consistent with the last reset, a high level assessment of a combined cycle unit will be conducted for informational purposes
- 2x1 combined cycle configurations have economy of scale over 1x1 but 1x1 more comparable to other peaking installations
- Higher fixed cost (\$/kW) but significantly lower variable cost (\$/MWh)
- Use of heat recovery steam generator (HRSG) optimizes temperature for SCR catalyst
- Start-up time and hold points largely set by HRSG design and use of auxiliary boilers, etc.

Recommended information technology design: 1 x 1 GE 7HA.02

- Representative cost (initial screening indicates this may be the lowest capital cost among comparable options)
- ► ISO Capacity (unfired) 573 MW
- ▶ ISO Heat Rate 5,973 Btu/kWh HHV

CCGT Technology Overview

1x1 CCGT	ISO Capacity (MW)	Initial Screening Cost Estimate (\$/kW) ¹	HHV Heat Rate (Btu/kWh)²	Start-Up Time
GE 7HA.02	573		5,973	< 30 minutes
Siemens SGT6-9000HL	595	\$920	6,012	< 30 minutes
MHPS 501J	484		62% Plant Efficiency	< 30 minutes
Siemens SGT6-8000H	460	\$1,070	6,228	< 30 minutes
MHPS 501GAC	427	\$1,070	60% Plant Efficiency	< 30 minutes
GE 7FA.05	376		6,270	25 minutes
Siemens SGT6-5000F	387	\$920	6,355	< 30 minutes

1 Preliminary capital cost estimate for screening purposes

2 HHV based on typical US pipeline quality gas heating value

* Information provided publicly available information published by manufacturer

2019-2020 DCR

10-5

Battery Storage Technology

Battery Technology Overview

- Lithium-ion battery based technology provides ~80% of market installations
 - Electric vehicles and battery production driving cost declines to lithiumion
 - Only 700MW of battery installations in the world is Flow Battery Technology
 - Other battery chemistries: Na-metal, PB-acid, Other
- Use case is the most important factor in technology selection
 - Chemistry, cycling, hours of storage, optimal resting charge, lifetime discharge cycles, fast charging impacts, recycling, etc.
- Batteries involve a host of considerations that are different than fossil-fuel peaking technology options

 Recommended technology options: Lithium-Ion Battery (4 hour and 6 hour)

Battery Technology Overview

Battery Technology	Experience	Power Capacity / Energy Capacity	Initial Screening Cost Estimate (\$/kW) ¹	Round Trip Efficiency
Lithium Ion	Current battery technology typically deployed, typically < 4 hr duration due to cost/market conditions	200 MW / 400 MWh	\$1,004	~85%
		200 MW / 800 MWh	\$1,384	~85%
		200 MW / 1,200 MWh	\$1,765	~85%
		200 MW / 1,600 MWh	\$2,146	~85%
Flow	Not widely utilized in North American market at large scale	200 MW / 1,600 MWh	Varies	~70%
CAES	Larger sized deployments more typical	300 MW / 2,400 MWh	Varies	~60%

1 Preliminary capital cost estimate for screening purposes; Lithium Ion based on NREL 2019 ATB